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ABSTRACT 
This paper presents a predictive vehicle stability control 

(VSC) strategy that distributes the drive/braking torques to each 

wheel of the vehicle based on the optimal exploitation of the 

available traction capability for each tire. To this end, tire 

saturation levels are defined as the deficiency of a tire to 

generate a force that linearly increases with the relevant slip 

quantities.  These saturation levels are then used to set up an 

optimization objective for a torque distribution problem within 

a novel cascade control structure that exploits the natural time 

scale separation of the slower lateral handling dynamics of the 

vehicle from the relatively faster rotational dynamics of the 

wheel/tire. 

The envisaged application of the proposed vehicle stability 

strategy is for vehicles with advanced and emerging pure 

electric, hybrid electric or hydraulic hybrid power trains 

featuring independent wheel drives. The developed predictive 

control strategy is evaluated for, a two-axle truck featuring such 

an independent drive system and subjected to a transient 

handling maneuver. 
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INTRODUCTION 
The adoption of vehicle stability control (VSC) systems 

have been instrumental in reducing fatalities in single-vehicle 

crashes [1, 2].  VSC (also called vehicle dynamics control 

(VDC) or electronic stability control (ESC)) systems help in 

reducing accidents by maintaining a driver’s control of the 

vehicle during emergency/aggressive maneuvers that approach 

or exceed the limits of tire/road adhesion.  Most VSC systems 

available on commercial vehicles today control the vehicle 

through active individual wheel braking by extending the 

existing hardware previously developed for anti-lock braking 

(ABS) and traction control systems.  These current VSC 

systems use differential (left-to-right) braking on either the 

front or rear axle based on a set of pre-defined rules and 

thresholds to generate a required corrective yaw moment for 

stabilization or for achieving the intentions of the driver 

steering inputs [1, 3]. 

There exists an opportunity to integrate stability control 

strategies that use alternative methods of activation as 

demonstrated by previous researchers utilizing controller 

corrections on front and rear steering [4-6], varying degrees of 

traction management [7-9], as well as active and semi-active 

suspension elements [10, 11]. 

This paper specifically focuses on predictive stability 

control for advanced and emerging vehicles with powertrains 

incorporating independently controlled wheel drives. These 

power trains could offer increased energy efficiency and 

reliability as well as improved packaging and noise/vibration 

isolation benefits. In this paper, however, we exploit the ability 

of applying independent torques to each wheel of the vehicle to 

design a novel torque distribution control strategy that can be 

used to ensure stability and driver-intended performance while 

targeting optimal use of available tire traction capability. 

 

Defining Saturation 
The interaction between a tire and the road surface has 

inherent nonlinearities and inefficiencies due to frictional 

adhesion limits. We refer to the main behavior as tire saturation 

and construct a metric to quantify the saturation level by 

comparing the actual nonlinear tire behavior to a linear 

expectation. The saturation level characterizes the deficiency of 

a tire to generate a force that increases linearly with slip.  As 

depicted in Figure 1, for a typical tire, as the saturation level 

increases, the traction capacity of the tire decreases. 
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Figure 1.  Tire Force Saturation 

 

The longitudinal tire force saturation can be defined 

mathematically as: 
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where, iσ  is the tire slip ratio; and ixF ,
ˆ  is the (estimate of) 

instantaneous longitudinal tire force; and Cx,i is the tire slip 

stiffness, assumed to be constant. Similar definitions can be 

given for the lateral tire force saturations as we do in our 

previous work [12]. In this paper, we refer only to longitudinal 

tire force saturations. 

A previous work in [13] treated the presence of lateral tire 

force saturation as an undesirable state to be merely detected 

and avoided with abrupt braking intervention to the saturated 

tire.  No provision was made to quantify and manage saturation 

levels,  In this work we present here, a control strategy is 

designed to optimally balance longitudinal tire saturation levels 

among all tires by managing the distribution of individual 

drive/brake torques. 

 

Model Predictive Control 
We propose and demonstrate a predictive control strategy to 

balance the impending tire saturation levels through controlled 

torque interventions within an optimal framework.  Such 

predictive techniques, referred to as Model Predictive Control 

(MPC) or specifically Nonlinear Model Predictive Control 

(NLMPC), have been used for vehicle control in traction 

control systems [14], autonomous vehicle control [15-17], and 

to determine under and over-steer vehicle conditions [18, 19].  

However, no research yet exists on the implementation of MPC 

or NLMPC for torque distribution control for VSC systems that 

target tire saturation management in the manner proposed and 

addressed in this work. 

Predictive control has been successfully applied to many 

applications in the chemical industry and in many 

manufacturing processes [20-23].  The basic mechanisms of 

MPC are shown in Figure 2. The current time in Figure 2 is 

denoted by index k, while the immediate past and future time 

indices are represented by k-1 and k+1, respectively.  The 

horizon, Hp, defines the time range in which the predicted state 

is optimized by variations of the future control inputs during 

the control horizon, Hc. 

 

 

Figure 2.  Illustration of Model Predictive Control 

 

In particular, we adopt the NLMPC process, which proceeds 

with linearization and discretization of a predictive model, an 

analytical forward prediction, setting up an objective function, 

and finally executing an optimization solver to determine the 

control inputs. The reader is referred to the text by  [21] for 

details of the NLMPC process.   

Model predictive control strategies offer the possibility of 

explicit consideration of optimality (in some sense) and easy 

formulation for multiple input/multiple output (MIMO) 

systems. These advantages make them particularly suitable for 

control of advanced powertrains that have known issues of 

over-actuation and nonlinear behavior as recognized and 

addressed by previous research on vehicle control [16, 24, 25]. 

 

PREDICTIVE TORQUE DISTRIBUTION CONTROL 
The structure of the proposed predictive control system is 

selected as a cascading of the already established yaw moment 

control (briefly included in the Appendix) and a novel 

predictive torque distribution control.  In this cascade structure, 

which is depicted in Figure 3, the high level control explicitly 

computes the corrective yaw moment and passes it as a 

constraint to the low level control that determines the individual 

wheel torques. The low level control in turn distributes the 

torque in such a way as to optimize longitudinal tire force 

saturations.  Vehicle sensors and lateral/longitudinal estimation 

routines provide the high and low level controllers with details 

on the current operating conditions of the vehicle for online 

linearizations and prediction initializations, discussed below. 

Normalized 

Tire Force 

iσ

ix

ix

C

F

,

,
ˆ

iκ iσ

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/31/2015 Terms of Use: http://asme.org/terms



 3 Copyright © 2012 by ASME 

 

Figure 3.  Yaw Moment Control Cascaded with Predictive 

Torque Distribution Control 

 

This cascade structure is motivated by the observation that 

the system dynamics to be controlled by the high and low level 

controllers are of different natural time scales.  The high level 

control must have sufficient response to control the lateral 

vehicle dynamics, which has a typical bandwidth in the range 

of 1-3 Hz. The low level control must sufficiently control the 

individual tire/wheel dynamics, which have higher bandwidths, 

in the range of 5-20 Hz. Given this basic observation, for the 

computations and demonstrations in this work, the predictive 

control application frequency is selected to be 100 Hz to 

sufficiently capture the fast dynamics. 

 

Saturation Control Objective 
An objective of equalizing the saturation levels can be 

posed by computing the deviation of the individual wheel 

saturations from their average using: 
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This can be re-written in the usual quadratic matrix form as: 
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where, Q1 is a constant positive definite matrix given by the 

corresponding parenthesis in (3) and κ is a vector of the 

individual tire saturations. 

 

Constraints 
The torque distribution must satisfy equality constraints 

which are computed on-line, specifically, 1) the total base 

torque that is commanded by the driver (or a separate vehicle 

speed controller) and 2) the corrective yaw moment required by 

a high level controller. These constraints are represented by: 
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total
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 (5) 

where, df and dr are the track widths; Rw is the tire radius; 

Fx,i is the individual tire forces; 
ψM  is the corrective yaw 

moment; Ti is the individual wheel torques; and Ttotal is the total 

commanded drive torque. 

 

Predictive Optimization Formulation 
A key parameter of the predictive framework is the 

prediction horizon, which is largely dependent on the system.  

It is desirable to predict forward as far as possible, even to 

infinity.  However, it is difficult to predict tire saturations for a 

vehicle forward to infinity, because of unknowns in the future 

system inputs and responses.  For example, the future driver 

input on the vehicle cannot be known a priori.  One only has 

the current inputs/constraints of yaw moment and base torque.  

Therefore, a simplification is made to consider a short and 

finite prediction horizon of 0.1 seconds to capture dynamics 

associated with saturation, and assume that the constraints are 

constant throughout this horizon.  It is assumed that fast update 

cycles of the receding horizon control scheme (selected to be 

100 Hz), which including linearization updates, offset the 

simplifications of short horizons and unknowable future 

inputs/constraints. 

The instantaneous objective in (3) must be expanded 

throughout the prediction horizon to properly pose the MPC 

optimization problem: 
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where, the functions f and g define the predictive vehicle 

system model; x is the state vector of velocity, the four wheel 

speeds, and the four tire forces; u is the input vector of the four 

wheel torques and  y is the output vector of the four 

longitudinal tire saturations. Y is a system output matrix which 

is a concatenation of the individual tire saturations into the 

future prediction horizon; Aeq and Beq are constant matrices that 

define the equality constraints; Q and R are weighting matrices; 

and Hp is the number of steps in the prediction horizon. 
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The predictive model must include states governing the 

longitudinal dynamics of the vehicle, the dynamics of each of 

the four wheels, as well as longitudinal tire force dynamics.  It 

is well known that these dynamics are nonlinear due to the 

definition of the wheel slip ratio, longitudinal tire force curves, 

and aerodynamics loads.  Each of these nonlinear components 

are linearized (at current operating points, based on estimates) 

and discretized in detail derivations presented in the Appendix. 

The result is an equivalent discrete time system: 

211 BuBAxx kkk ++=+
 (7) 

1ECxy kk +=  (8) 

where, the matrices of A, B1, B2, C, and E are continuously 

updated for each iteration of the controller; x u, and y are as 

defined above.  An important distinction of this process 

compared to standard MPC techniques [21], is the presence of 

constant matrices, B2 and E1, in (7) and (8) (See detail in 

Appendix). 

The discretized linear system in (7) and (8) is used to 

analytically predict the system response as well the resulting 

saturations due to incremental changes in torque inputs.  The 

expansion of the predicted response from the current to a future 

horizon of length Hp, is given by: 
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The matrices in (9) are constructed at each control iteration 

with linearization updates of the prediction model.  The 

predicted output equation, (9), can be simplified into the form: 

EUuxY kk +∆+Ω+= − ζγ 1
 (10) 

where, the matrices of γ, Ω, ζ, and E are constant during one 

control iteration; and xk and uk-1 are the current states (obtained 

through measurements or estimates) and previous control 

inputs, respectively.  The analytical prediction of the output 

(tire saturations), Y, is substituted into the objective/cost 

function in (6).  By expanding, simplifying, collecting terms, 

and neglecting constant additive terms, the cost function 

reduces to a quadratic form given by: 
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where, Q is defined by (3) for the objective of balancing 

saturations; and R is a diagonal of control weights that 

penalizes the rate of change of the input torques. The weights 

can be used as tuning parameters to improve the control 

performance.  The static optimization problem in (11) can be 

easily solved for the wheel torque increments, ∆U, using 

quadratic optimization software tools. 

To proceed, the equality constraint (5) should be 

transformed to be in terms of the control input increment for the 

prediction horizon. This is done through matrix expansion and 

inclusion of current torque inputs to present the constraint in 

terms of input increments as follows: 
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where, uk is a vector of the four wheel torques; ∆uk is the 

increment in the input; and uk,i is the individual torques. 

The constraint of yaw moment in (4) is more challenging to 

simplify for the posed optimization, because of its dependency 

on the tire longitudinal forces, states of the prediction model, 

instead of input torque increments.  Therefore, this constraint 

can be reformulated by the substitution of the prediction model 

in the computation of the tire forces: 
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( )2111, BuBuBAxCF jjjjx +∆++′= −
 (14) 

where, j is any indexed time; C′  is an output matrix that 

isolates the states of individual longitudinal forces as a vector, 

jxF ,
. 

By substitution and rearrangement, the instantaneous 

constraint is given by: 
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Since each equality constraint must be satisfied throughout 

the prediction horizon, the instantaneous definitions of (12) and 
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(15) are expanded for each time step in the prediction horizon 

as follows: 
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where, Aeq,1 and Beq,1 correspond to the matrices in (12); 

Aeq,2 and Beq,2 are defined by (15); and Aeq and Beq are the 

equality constraints expanded throughout the prediction horizon 

in the posed optimization problem in (11). 

As already stated, the predictive model includes many 

simplifying assumptions from linearization, discretization, 

known/unknown disturbances, short prediction horizons, and 

continuously changing constraints. Repeating the prediction 

and optimization in receding horizon control cycles (with the 

most recent vehicle state information every control cycle) helps 

compensate for these simplifications. 

 

RESULTS & DISCUSSION 
The predictive torque distribution control is applied on an 

example vehicle, a two-axled heavy truck, with the cascade 

structure already depicted in Figure 3.  A yaw rate reference 

controller (described in the Appendix) is adopted for computing 

the high-level corrective moment and a PI forward speed 

controller determines the total base torque.  The detailed 

equations of motion for the example heavy truck (includes 

seven degrees of freedom and a combined-slip tire model) to 

which the control is applied, can be found in previous works 

[12, 26, 27]. 

The predictive control strategy is evaluated in an open-loop 

transient maneuver, defined by NHTSA, to mimic an extreme 

lane change maneuver for purposes of VSC system testing. The 

steering is described by a modified sinusoid with a dwell as is 

shown along with a typical stable trajectory in Figure 4 (an 

uncontrolled vehicle becomes unstable). 

 

Figure 4.  Road-Wheel Steer Input and Trajectory of Open-

Loop Transient Maneuver 

 

During the maneuver, the vehicle speed, initially at 80 kph, 

is inevitably reduced due to the effects of lateral tire force 

components on the longitudinal dynamics of the vehicle.  The 

lateral tire forces present dragging forces, which are 

compensated for by the speed controller’s action on the drive 

train.  To reduce the effect of the speed restoring action of the 

speed controller on the lateral response, the total drive torque 

has been limited to 500 Nm.  However, in some traction control 

systems, the base torque is actively reduced to limit the 

approach of the system to instability.  Such an approach would 

be a logical addition to the torque management controller, but is 

neglected here to maintain focus on the predictive torque 

distribution control. 

Figures 5-7 show the performance of the predictive torque 

distribution controller presented in this paper. The on-line 

computed constraints, which include the corrective yaw 

moment and the total base torque (from a PI speed controller) 

during this maneuver, are shown in Figure 5. 

 

Figure 5.  Constraints From an Example Torque 

Distribution Control 

 

The yaw response and controlled wheel torques are shown 

in Figure 6.  It can be seen that the actual yaw rate (solid line) 

follows the desired yaw rate (generated by a reference 

generator (Appendix), dashed line), through corrective driving 

and braking actions on the individual wheels. 

 

Figure 6.  Yaw Rate Response and Optimal Torque 

Distribution 

 

The sideslip and lateral acceleration responses under the 

predictive torque distribution control are shown in Figure 7.  

The side-slip reaches a peak of 10 degrees at its most extreme 

point during the maneuver, which occurs during the dwell 

portion of the steering input.  The sideslip maintains a stable 

response by returning to zero with no overshoot.  The lateral 

acceleration also approaches a peak during the dwell, late in the 

maneuver.  The peak lateral acceleration of approximately 0.6 

Gs is typical of a heavy truck, because of the significance of 
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lateral load transfer and it’s corresponding reduction in tire 

lateral force capability. 

 

Figure 7.  Side-Slip and Lateral Acceleration of Controlled 

Response 

 

The above responses show that the predictive torque 

distribution controller performs well in maintaining the stability 

of the vehicle while satisfying the on-line constraints and 

accommodating responsiveness to driver intentions. 

To further illustrate the benefits of the predictive torque 

distribution control strategy proposed here, its performance is 

compared to that of a conventional rule-based braking strategy 

that includes individual wheel braking and an anti-lock braking 

system (ABS).  The rule-based braking strategy uses sequential 

braking as shown in Figure 8, leading to much higher torques 

and even requires the engagement of ABS because of wheel 

lock at the right rear wheel. 

 

Figure 8.  Comparison of Wheel Torques 

 

The predictive torque distribution control maintains control 

of the vehicle within a torque range from -300 to 500 Newton 

meters, while the rule-based braking requires ten times the 

braking torques to achieve stability, but falls short of the 

desired corrective yaw moment.  Since longitudinal forces are 

physically limited by the available traction of the braked tire, 

such rule-based braking controllers have lower instability 

thresholds where not enough corrective yaw moment would be 

generated to stabilize the vehicle.  The high braking torques of 

the rule-based braking control push the vehicle tires to their 

adhesion limits, leading to much higher levels of tire saturation 

as seen in Figure 9. 

 

Figure 9.  Comparison of Longitudinal Tire Saturations 
 

The right rear longitudinal tire saturation of the rule-based 

braking control actually peaks at a value of 1.5 (indicating 

wheel lockup), but is not shown here for purposes of similarly 

scaled comparisons.  Another deficiency of the rule-based 

braking control is that it acts counter to the speed controller by 

applying the brakes and reducing the velocity of the vehicle 

(the speed controller attempts to compensate by applying more 

drive torque).  The predictive torque distribution control is 

smarter by including a constraint on achieving the demanded 

torque in deciding how to stabilize the vehicle. 

Finally, we remark that the above results show a successful 

implementation of a novel predictive torque distribution control 

that manages longitudinal tire force saturations as the low level 

controller in a cascade structure featuring an already 

established high level yaw moment controller.  The predictive 

torque distribution controller presented here is modular (self 

contained) and can be used in conjunction with any selected 

high-level control algorithm for corrective yaw moment 

generation. 

 

SUMMARY AND CONCLUSIONS 
In this paper, a new predictive torque distribution control 

that manages the longitudinal tire-force saturations has been 

proposed and described in detail. This has then been 

implemented in a cascading design that exploits the natural 

timescale separation of the lateral handling dynamics and the 

dynamics of the tire/wheel. Application of the proposed 

strategy to a two-axled heavy truck with an independent drive 

powertrain showed clear benefits in maintaining low 

longitudinal saturation levels across all tires with low 

drive/brake torque demands as compared to a conventional 

VSC strategy that employs rule-based braking to stabilize the 

vehicle. 

To summarize, the main contributions of this paper include: 

• Nonlinear tire saturations are used in a predictive 

framework to manage torque distribution while 

controlling the lateral dynamics of the vehicle. 

• The predictive torque distribution control strategy 

solves the over actuation problem of advanced power 

trains with independent drives. 
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Finally, we note that the low level predictive torque 

distribution control is modular and can be interfaced with 

various high level controllers in the cascading structure. In our 

future work, we describe a cascading predictive control strategy 

that manages combined tire-force saturations for the purposes 

of vehicle stability control. 
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APPENDICES 
 

Established Yaw Moment Controller 
The high-level feedback stability controller with an 

explicitly defined corrective yaw moment (of a PID type as in 

[4, 28-30]) compares the desired yaw rate to the actual or 

measured yaw rate of the vehicle to determine if the vehicle has 

excessive or insufficient yaw rate (over or under-steer). If 

excessive yaw rate error is observed, the stability controller acts 

to reduce the yaw rate error by requesting an effective 

corrective yaw moment given by: 

M
ψ

= K
p

+
K

I

s
+ K

D
s







&ψ

desired
− &ψ( )  (A.1) 

where, 
gVKL

V

xus

x

)(
2desired

+
=

δ
ψ&  is a desired yaw rate 

from a linear steady state projection from the 2 DOF model.   

 

Linearization of Prediction Model 
The longitudinal dynamics of the vehicle is predicted from a 

simplified expression that includes the longitudinal tire forces 

and the aerodynamic load.  The expression is further simplified 

through linearization as: 
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(A.2) 

where, Fxi are the longitudinal tire forces; ρ is air density; 

CD and A is the vehicle’s drag coefficient and cross-sectional 

area;Vx0 is the vehicle velocity at the point of linearization 

(determined by the current state); and Vx is the system state for 

velocity throughout the prediction. 

In order to predict the dynamics of each wheel, the 

following equation is used for each of the four tires: 

RRLRRFLFi
I

bRFT
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iiwixi
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−−
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ω
ω&  (A.3) 

where, Ti is the controlled torque, Rw is the tire radius, and 

bi is wheel viscous damping.  It should be noted that the wheel 

damping term was included in order to achieve a more stable 

prediction for the wheel dynamics subjected to the commanded 

wheel torque. 

Since the longitudinal tire saturations include tire forces, it 

is desirable to formulate state equations for these forces.  The 

longitudinal force dynamics can be constructed from the 

longitudinal vehicle dynamics as well as the wheel spin 

dynamics.  Assuming the tire force is a function of both 

previously defined states, the tire force dynamics are given by: 
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where the coefficients K1 and K2 are determined from a 

nonlinear representation of the tire properties from the 

force/slip curve and partial derivatives of the slip ratio 

expressions, which are analytically determined by: 
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where, Vx,0 and ωi,0 are the states at the point of 

linearization, which are defined by the current estimated values 

at the start of the prediction horizon.  The point of linearization 

is also used to select the proper gradient of tire force to slip 

ratio, which is a form of effective slip stiffness at the 

linearization point.  This can be implemented using a simple 

lookup table based on current estimates of tire slip ratio. 

The tire properties contained in the lookup table are to be 

obtained from tire test data.  However, this information would 

be dependent on environmental conditions that could alter the 

coefficient of friction between the tire and road surface.  For 

simplicity of presenting the control structure, in this research it 

will be assumed that the interface between the tire and the road 

is similar to that of tire testing conditions.  However, in 

practical use it is envisioned that the accuracy of the tire 

characteristics can be improved through a separate online 

friction coefficient estimator. 

Substituting the derived terms from slip ratio (A.5 & A.6) as 

well as the wheel-spin dynamics (A.3) and the longitudinal 

vehicle dynamics (A.2) into the tire force equations (A.4), the 

state dynamics of the four tire forces are defined by: 
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The equations (A.2), (A.3), and (A.7) can be placed in a 

state-space matrix form to be used as the linearized predictive 

model.  The continuous state-space system is represented below 

in (A.9) due to equation size. 

To complete the state-space output equations, the 

longitudinal saturations, (1), can be determined from the states 

of this predictive model. The defining equations of the 

saturations are linearized at the current states as follows: 
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The matrix forms of the state-space and output equations 

are given by: 
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 (A.10) 

 

For clarity in the continuing derivations of the predictive 

control, these state-matrix equations are compactly written in 

the form: 

cccccc BuBxAx ,2,1 ++=&  (A.11) 

1ECxy cc +=  (A.12) 

where, B1 is the input matrix corresponding to the wheel 

torques and B2 is the constant term needed to account for the 

aerodynamic drag term appearing in (A.2). 
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The continuous system defined by the state-space matrices 

in (A.9) must be discretized at a time step, τ, of 1 millisecond 

so that it can be used in a predictive controller.  This is 

accomplished through [31]: 

[ ] [ ] ( )[ ]
ccccc
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


=

=

−

∫ ττ

 (A.13) 

Then the resulting equivalent discrete time system is given 

by: 

 (A.14) 

 (A.15) 
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